Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 638
Filter
1.
J Ethnopharmacol ; 328: 118036, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38460575

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The proper application of toxic medicines is one of the characteristics of traditional Chinese medicines, and the use of traditional Chinese medicines follows the principle of dialectical treatment. It is necessary to combine different "syndrome" or "disease" states with the toxicity of traditional Chinese medicines to form a reliable toxicity evaluation system. Fuzi, the lateral root of Aconitum carmichaelii Debx, is recognized as a panacea for kidney yang deficiency syndrome, however, its toxic effects significantly limit its clinical application. AIM OF THE STUDY: Herein, our research aimed to explore the toxic effects of Fuzi on syndrome models, and tried to reveal the underlying mechanisms. MATERIALS AND METHODS: Firstly, the mouse model of kidney yang deficiency syndrome was established through intramuscular injection of 25 mg/kg hydrocortisone per day for 10 consecutive days. Then, the acute toxicity of Fuzi in normal mice and kidney yang deficiency model mice was explored. Finally, the plasma metabolite concentrations and liver CYP3A4 enzyme activity were analyzed to reveal the possible mechanisms of the different pharmacological and toxicological effects of Fuzi in individuals with different physical constitutions. RESULTS: It was found that the treatment with Fuzi (138 g/kg) had serious toxic effects on kidney yang deficiency mice, leading to the death of 80% of the mice, whereas it showed no lethal toxicity in normal mice. This indicates that Fuzi induced greater toxicity in kidney yang deficiency mice than in normal ones. The liver CYP3A4 enzyme activity in kidney yang deficiency mice was decreased by 20% compared to the controls, resulting in slower metabolism of the toxic diester diterpenoid alkaloids in Fuzi. CONCLUSION: In conclusion, our study showed that changes of the metabolic enzyme activity in individuals with different syndromes led to different toxic effects of Chinese medicines, emphasizing the crucial importance of considering individual physical syndromes in the clinical application of traditional Chinese medicine, and the significance of conducting safety evaluations and dose predictions on animal models with specific syndromes for traditional Chinese medicines.


Subject(s)
Aconitum , Diterpenes , Drugs, Chinese Herbal , Mice , Animals , Medicine, Chinese Traditional , Yang Deficiency/chemically induced , Yang Deficiency/drug therapy , Cytochrome P-450 CYP3A , Drugs, Chinese Herbal/pharmacology , Diterpenes/toxicity , Diterpenes/therapeutic use , Kidney
2.
J Med Chem ; 67(2): 1093-1114, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38169372

ABSTRACT

Triptolide has a significant antitumor activity, but its toxicity limits its clinical application. As the mitochondrion-targeting strategy showed an advantage in selective antitumor effect based on the higher mitochondrial membrane potential (MMP) in tumor cells than normal cells, the lipophilic cations triphenylphosphonium and E-4-(1H-indol-3-yl vinyl)-N-methylpyridinium iodide (F16) were selected as targeting carriers for structural modification of triptolide. The derivatives bearing F16 generally retained most antitumor activities, overcame its inhibition plateau phenomena, and enhanced its selective antitumor effect in lung cancer. The representative derivative F9 could accumulate in the mitochondria of NCI-H1975 cells, inducing apoptosis and a dose-dependent increase in intracellular reactive oxygen species and reducing MMP. Moreover, no effects were observed in normal cells BEAS-2B. In vivo studies showed that the developmental, renal, and liver toxicities of F9 to zebrafish were significantly lower than those of triptolide. This study provides a promising idea to relieve the toxicity problem of triptolide.


Subject(s)
Diterpenes , Organophosphorus Compounds , Phenanthrenes , Animals , Zebrafish , Mitochondria , Apoptosis , Diterpenes/toxicity , Diterpenes/chemistry , Phenanthrenes/toxicity , Phenanthrenes/chemistry , Cell Line, Tumor , Epoxy Compounds
3.
J Agric Food Chem ; 71(34): 12730-12740, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37599642

ABSTRACT

In this study, two tigliane diterpenoids, 12-deoxyphorbol-13-hexadecanoate and 12-deoxyphorbol-13-acetate (prostratin), were identified from the methanol extract of the roots of Euphorbia fischeriana and were found to have the ability to significantly reduce the survival of Caenorhabditis elegans. It was determined that exposure to these two compounds had toxic effects on the growth, reproduction, locomotion behavior, and accumulation of lipids and lipofuscin of the nematodes. Moreover, the transcription levels of the genes associated with lipid accumulation, apoptosis, insulin, and nuclear hormone synthesis in C. elegans were significantly influenced. Interestingly, 12-deoxyphorbol-13-hexadecanoate produced exposure toxicity at lower concentrations than that of prostratin. Pearson correlation analysis indicates that the elevated exposure toxicity of 12-deoxyphorbol-13-hexadecanoate may be the result of differing transcription levels, which result from the differential expression of fat-6, egl-38, and cep-1. These results reveal that esterification with a long-chain fatty acid elevates the exposure toxicity of this tigliane diterpenoid, thus providing a basis for the application of tigliane diterpenoids in plant-derived nematicides.


Subject(s)
Diterpenes , Euphorbia , Phorbols , Animals , Caenorhabditis elegans/genetics , Esterification , Fatty Acids , Diterpenes/toxicity , Palmitates
4.
Chem Biol Interact ; 382: 110651, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37516378

ABSTRACT

Triptolide is a predominant active component of Triptergium wilfordii Hook. F, which has been used for the treatment of cancers and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and diabetic nephropathy. Therefore, triptolide and its derivates are considered to have promising prospects for development into drugs. However, the clinical application of triptolide is limited due to various organ toxicities, especially liver toxicity. The potential mechanism of triptolide-induced hepatotoxicity has attracted increasing attention. Over the past five years, studies have revealed that triptolide-induced liver toxicity is involved in metabolic imbalance, oxidative stress, inflammations, autophagy, apoptosis, and the regulation of cytochrome P450 (CYP450) enzymes, gut microbiota and immune cells. In this review, we summarize the pharmacological applications and hepatotoxicity mechanism of triptolide, which will provide solid theoretical evidence for further research of triptolide.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Drug-Related Side Effects and Adverse Reactions , Hepatitis , Phenanthrenes , Humans , Diterpenes/toxicity , Phenanthrenes/toxicity , Epoxy Compounds/toxicity , Chemical and Drug Induced Liver Injury/etiology
5.
Ecotoxicol Environ Saf ; 258: 114963, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37130490

ABSTRACT

AIM: Triptolide (TRI) is an active diterpenoid lactone compound isolated from Tripterygium wilfordii,We focused on investigating the effect and mechanism of Triptolide (TRI) on liver injury. METHODS: The toxic dose (LD50 = 100 µM) of TRI on liver Kupffer cells was explored, and network pharmacological analysis was performed to identify Caspase-3 as the target of TRI-induced liver injury. Regarding the pyroptosis research, we examined the level of TRI-induced pyroptosis in Kupffer cells, including inflammatory cytokine detection, protein assay, microscopic cell observation and LDH toxicity test. The effect of TRI on pyroptosis was assessed after knocking out GSDMD, GSDME and Caspase-3 in cells, respectively. We also investigated the liver injury-inducing action of TRI at the animal level. RESULTS: Our experimental results were consistent with those predicted by network pharmacology, indicating that TRI could bind to Caspase-3-VAL27 site to promote the cleavage of Caspase-3, and Cleaved-Caspase-3 induced pyroptosis of Kupffer cells through GSDME cleavage. GSDMD was not involved in TRI's action. TRI could promote Kupffer cell pyroptosis, elevate the inflammatory cytokine levels, and facilitate the expressions of N-GSDME and Cleaved-Capase 3. After the mutation of VAL27, TRI could not bind to Caspase-3. Animal-level results showed that TRI could induce liver injury in mice, while Caspase-3 knockout or Caspase-3 inhibitors could antagonize the action of TRI. CONCLUSION: We find that the TRI-induced liver injury occurs primarily through the Caspase-3-GSDME pyroptosis signal. TRI can promote Caspase - 3 maturation and regulate kupffer cell pyroptosis. The present findings offer a new idea for the safe use of TRI.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Diterpenes , Animals , Mice , Pyroptosis , Kupffer Cells/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Diterpenes/toxicity , Cytokines
6.
J Integr Med ; 21(3): 302-314, 2023 05.
Article in English | MEDLINE | ID: mdl-37080800

ABSTRACT

OBJECTIVE: The transformations that occur in diterpenoid alkaloids during the process of sand frying for Chinese herbal medicine preparation have yet to be clarified. This study investigated the structural changes that take place in 3-acetylaconitine during a simulation of heat-processing and evaluated the toxicity and biological activity of the pyrolysis products. METHODS: The diterpenoid alkaloid 3-acetylaconitine was heated at 180 °C for 15 min to simulate the process of sand frying. The pyrolysis products were separated using column chromatography, and their structures were investigated using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. Further, in vivo cardiotoxicity and acute toxicity of 3-acetylaconitine and its pyrolysis products were compared, and the aconitine-induced arrhythmia model was employed to evaluate the antiarrhythmic effect of the pyrolysis products. RESULTS: Two new diterpenoid alkaloids, pyroacetylaconitine and 16-epi-pyroacetylaconitine, a pair of epimers at C-16, were isolated. After comparing the structures of these compounds, possible transformation pathways were proposed. Compared with the prototype compound, 3-acetylaconitine, the cardiotoxicity and acute toxicity of the heat-transformed products were significantly decreased. In the biological activity assay, the two pyrolysis products exhibited an effective increase in ventricular premature beat latency, a reduction in the occurrence of ventricular tachycardia, as well as an increase in the rate of arrhythmia inhibition, implying strong antiarrhythmic activity. CONCLUSION: Compared with 3-acetylaconitine, its pyrolysis products displayed lower toxicity and good antiarrhythmic effects; thus, they have potential for being developed into antiarrhythmic medicines. Please cite this article as: Wang YJ, Wang Y, Tao P. Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine. J Integr Med. 2023; 21(3): 302-314.


Subject(s)
Alkaloids , Diterpenes , Humans , Aconitine/toxicity , Aconitine/chemistry , Cardiotoxicity , Sand , Alkaloids/toxicity , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/drug therapy , Diterpenes/toxicity
7.
Toxicol Appl Pharmacol ; 467: 116479, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36963520

ABSTRACT

Drug-induced organ injury is one of the key factors causing organ failure and death in the global public. Triptolide (TP) is the main immunosuppressive component of Tripterygium wilfordii Hook. f. (Leigongteng, LGT) for the first-line management of autoimmune conditions, but it can cause serious multi-organ injury. Lysimachia christinae (Jinqiancao, JQC) is a detoxifying Chinese medicine and could suppress LGT's toxicity. It contains many immune enhancement and organ protection components including chlorogenic acid (CA), rutin (Rut), and quercetin (Que). This study aimed to explore the protection of combined treatments of these organ-protective ingredients of JQC on TP-induced liver, kidney, and heart injury and initially explore the mechanisms. Molecular docking showed that CA, Rut, and Que bounded protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway-related molecules intimately and might competitively antagonize TP. Corresponding in vivo results showed that the combination activated TP-inhibited protein of AKT/mTOR pathway, and reversed TP-induced excessive ferroptosis (excessive Fe 2+ and lipid peroxidation malondialdehyde accumulation, decreased levels of antioxidant enzymes catalase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and superoxide dismutase, and down-regulated P62/nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway), and apoptosis (activated apoptotic factor Fas and Bax and inhibited Bcl-2) in the organ of mice to varying degrees. In conclusion, the combined treatments of CA, Rut, and Que from JQC inhibited TP-induced multi-organ injury in vivo, and the mechanism may largely involve immunomodulation and activation of the AKT/mTOR pathway-mediated cell death reduction including ferroptosis and apoptosis inhibition.


Subject(s)
Diterpenes , Ferroptosis , Phenanthrenes , Mice , Animals , Quercetin , Proto-Oncogene Proteins c-akt/metabolism , Chlorogenic Acid , Lysimachia , Rutin/pharmacology , Molecular Docking Simulation , Oxidative Stress , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Diterpenes/toxicity , Phenanthrenes/toxicity , Apoptosis , Epoxy Compounds/toxicity
8.
Toxicol Lett ; 379: 67-75, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36990132

ABSTRACT

This study was to investigate the potential mechanism of triptolide-induced hepatotoxicity. We found a novel and variable role of p53/Nrf2 crosstalk in triptolide-induced hepatotoxic process. Low doses of triptolide led to adaptive stress response without obvious toxicity, while high levels of triptolide caused severe adversity. Correspondingly, at the lower levels of triptolide treatment, nuclear translocation of Nrf2 as well as its downstream efflux transporters multidrug resistance proteins and bile salt export pump expressions were significantly enhanced, so did p53 pathways that also increased; at a toxic concentration, total and nuclear accumulations of Nrf2 decreased, while p53 showed an obvious nuclear translocation. Further studies showed the cross-regulation between p53 and Nrf2 after different concentrations of triptolide treatment. Under mild stress conditions, Nrf2 induced p53 highly expression to maintain the pro-survival outcome, while p53 showed no obvious effect on Nrf2 expression and transcriptional activity. Under high stress conditions, the remaining Nrf2 as well as the largely induced p53 mutually inhibited each other, leading to a hepatotoxic result. Nrf2 and p53 could physically and dynamically interact. Low levels of triptolide enhanced the interaction between Nrf2 and p53. Reversely, p53/Nrf2 complex dissociated at high levels of triptolide treatment. Altogether, variable p53/Nrf2 crosstalk contributes to triptolide-induced self-protection and hepatotoxicity, modulation of which may be a potential strategy for triptolide-induced hepatotoxicity intervention.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Drug-Related Side Effects and Adverse Reactions , Phenanthrenes , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Suppressor Protein p53/genetics , Diterpenes/toxicity , Phenanthrenes/toxicity , Epoxy Compounds/toxicity , Chemical and Drug Induced Liver Injury/etiology
9.
Journal of Integrative Medicine ; (12): 302-314, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982683

ABSTRACT

OBJECTIVE@#The transformations that occur in diterpenoid alkaloids during the process of sand frying for Chinese herbal medicine preparation have yet to be clarified. This study investigated the structural changes that take place in 3-acetylaconitine during a simulation of heat-processing and evaluated the toxicity and biological activity of the pyrolysis products.@*METHODS@#The diterpenoid alkaloid 3-acetylaconitine was heated at 180 °C for 15 min to simulate the process of sand frying. The pyrolysis products were separated using column chromatography, and their structures were investigated using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. Further, in vivo cardiotoxicity and acute toxicity of 3-acetylaconitine and its pyrolysis products were compared, and the aconitine-induced arrhythmia model was employed to evaluate the antiarrhythmic effect of the pyrolysis products.@*RESULTS@#Two new diterpenoid alkaloids, pyroacetylaconitine and 16-epi-pyroacetylaconitine, a pair of epimers at C-16, were isolated. After comparing the structures of these compounds, possible transformation pathways were proposed. Compared with the prototype compound, 3-acetylaconitine, the cardiotoxicity and acute toxicity of the heat-transformed products were significantly decreased. In the biological activity assay, the two pyrolysis products exhibited an effective increase in ventricular premature beat latency, a reduction in the occurrence of ventricular tachycardia, as well as an increase in the rate of arrhythmia inhibition, implying strong antiarrhythmic activity.@*CONCLUSION@#Compared with 3-acetylaconitine, its pyrolysis products displayed lower toxicity and good antiarrhythmic effects; thus, they have potential for being developed into antiarrhythmic medicines. Please cite this article as: Wang YJ, Wang Y, Tao P. Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine. J Integr Med. 2023; 21(3): 302-314.


Subject(s)
Humans , Aconitine/chemistry , Cardiotoxicity , Sand , Alkaloids/toxicity , Arrhythmias, Cardiac/drug therapy , Diterpenes/toxicity
10.
Toxicology ; 482: 153351, 2022 12.
Article in English | MEDLINE | ID: mdl-36272568

ABSTRACT

Triptolide (TP) is the major active ingredient of Tripterygium wilfordii Hook, a traditional Chinese herb that possesses various pharmacological activities and has been used to treat autoimmune and inflammatory diseases for thousands of years. However, the clinical application of TP is limited due to its multiorgan toxicity, and in particular, its negative impact on female fertility. To date, the specific toxic mechanisms on reproduction induced by TP remain unclear. In the current study, an LC-MS/MS-based metabolomic approach was adopted to study TP-induced reproductive toxicity and its mechanism. Histopathological examination of the ovaries showed that TP significantly induced follicular atresia and decreased the numbers of corpus luteum in rats, as well as reducing the gonadal index and destroying the microstructure of the ovary. Immunohistochemical staining revealed that TP significantly induced apoptosis of rat follicle cells. Metabolomics analysis revealed that 67 and 74 small molecule metabolites in the ovaries and serum, respectively (fold-changes > 1.5, p < 0.05), were significantly different in TP-treated rats compared to CON group rats. Target profiling identified the metabolites arachidonic acid, prostaglandin D2, prostaglandin H2 and prostaglandin E2 as potential serum biomarkers for TP-induced ovary damage.


Subject(s)
Diterpenes , Phenanthrenes , Female , Rats , Animals , Ovary , Chromatography, Liquid , Tandem Mass Spectrometry , Follicular Atresia , Phenanthrenes/toxicity , Diterpenes/toxicity , Epoxy Compounds/toxicity , Metabolomics
11.
Fitoterapia ; 157: 105133, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35114336

ABSTRACT

Six diterpenoids including three ent-kauranes (1-2, 4) and three cleistanthanes (3, 5-6) were isolated from the roots and stems of Phyllanthus acidus (L.) Skeels. Of them, (16S)-ent-16,17,18-tri-hydroxy-19-nor-kaur-4-en-3-one (1), phyllanthone A (2), and 6-hydroxycleistanthol (3) are new compounds, while the ent-kaurane diterpenoids were reported from the titled plant for the first time. Their structures were elucidated on the basis of the extensive spectroscopic analyses. Compounds 2 and 4-6 displayed cytotoxic potential with IC50 values ranging from 1.96 to 29.15 µM. They also showed moderate anti-inflammatory activities (IC50 = 6.30-12.05 µM). Particularly, the new ent-kaurane 2 displayed cytotoxic potential against HL-60 (IC50 = 2.00 µM) and MCF-7 (IC50 = 3.55 µM) cells, and anti-inflammatory activity (IC50 = 6.47 µM).


Subject(s)
Diterpenes, Kaurane/toxicity , Diterpenes/toxicity , Phyllanthus/chemistry , Plant Extracts/toxicity , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/toxicity , Cell Line, Tumor , Diterpenes/chemistry , Diterpenes, Kaurane/chemistry , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemical synthesis , Plant Roots/chemistry , Plant Stems/chemistry
12.
J Ethnopharmacol ; 289: 115090, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35143937

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium glycosides tablets (TGT) and Tripterygium wilfordii tablets (TWT) have been used to treat autoimmune diseases clinically, however, the side effects of TWT are higher than TGT, especially for hepatotoxicity. THE AIM OF THE STUDY: This study aims to determine the mechanism of TWT-induced liver injury. MATERIALS AND METHODS: We performed metabolomic analysis of samples from mice with liver injury induced by TGT and TWT. Ppara-null mice were used to determine the role of PPARα in TWT-induced liver injury. RESULTS: The results indicated that TWT induced the accumulation of medium- and long-chain carnitines metabolism, which was associated with the disruption of PPARα-IL6-STAT3 axis. PPARα agonists fenofibrate could reverse the liver injury from TWT and TP/Cel, and its protective role could be attenuated in Ppara-null mice. The toxicity difference of TWT and TGT was due to the different ratio of triptolide (TP) and celastrol (Cel) in the tablet in which TP/Cel was lower in TWT than TGT. The hepatotoxicity induced by TP and Cel also inhibited PPARα and upregulated IL6-STAT3 axis, which could be alleviated following by PPARα activation. CONCLUSIONS: These results indicated that PPARα plays an important role in the hepatotoxicity of Tripterygium wilfordii, and PPARα activation may offer a promising approach to prevent hepatotoxicity induced by the preparations of Tripterygium wilfordii.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , PPAR alpha/genetics , Plant Extracts/toxicity , Tripterygium/chemistry , Animals , Chemical and Drug Induced Liver Injury/genetics , Diterpenes/chemistry , Diterpenes/toxicity , Epoxy Compounds/chemistry , Epoxy Compounds/toxicity , Male , Metabolomics , Mice , Mice, Inbred C57BL , Mice, Knockout , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/toxicity , Phenanthrenes/chemistry , Phenanthrenes/toxicity , Plant Extracts/chemistry , Tablets
13.
J Insect Physiol ; 137: 104358, 2022.
Article in English | MEDLINE | ID: mdl-35026301

ABSTRACT

The thunder god vine, Tripterygium hypoglaucum, is a toxic nectar plant distributed across China. A terpenoid, called triptolide (TRP), found in nectar can impair honeybees' foraging responses, dance communication, and olfactory learning. In the present study, we tested the tolerances of the native honeybee Apis cerana and the introduced honeybee A. mellifera to short-term and long-term exposure to TRP. The results showed that introduced A. mellifera is more vulnerable in fatality to high concentrations of TRP sucrose solution (5 and 10 µg TRP mL-1) than A. cerana. We also compared the short-term and long-term exposure effects of TRP on olfactory learning and memory between the two honeybee species, and the olfactory learning and memory of both honey bee species showed impaired performance after both 2 h or 7 days of being fed with TRP sucrose solution. However, A. cerana showed a higher tolerance and resistance to TRP toxin than A. mellifera. Our results support a coevolution hypothesis in that the native species A. cerana has higher toxin tolerance than the introduced species A. mellifera.


Subject(s)
Bees/physiology , Diterpenes , Animals , Diterpenes/toxicity , Epoxy Compounds , Phenanthrenes/toxicity , Plant Nectar , Terpenes/toxicity
14.
Toxicol In Vitro ; 78: 105267, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34688839

ABSTRACT

Grandiflorenic acid (GFA) is one of the main kaurane diterpenes found in different parts of Sphagneticola trilobata. It has several biological activities, especially antiprotozoal action. In turn, Chagas disease is a complex systemic disease caused by the protozoan Trypanosoma cruzi, and the drugs available to treat it involve significant side effects and impose an urgent need to search for therapeutic alternatives. In this context, our goal was to determine the effect of GFA on trypomastigote and intracellular amastigote forms. Our results showed that GFA treatment led to significantly less viability of trypomastigote forms, with morphological and ultrastructural changes in the parasites treated with IC50 of GFA (24.60 nM), and larger levels of reactive oxygen species (ROS), mitochondrial depolarization, lipid droplets accumulation, presence of autophagic vacuoles, phosphatidylserine exposure, and plasma membrane damage. In addition, the GFA treatment was able to reduce the percentage of infected cells and the number of amastigotes per macrophage (J774A.1) without showing cytotoxicity in mammalian cell lines (J774A.1, LLCMK2, THP-1, AMJ2-C11), in addition to increasing TNF-α and reducing IL-6 levels in infected macrophages. In conclusion, the GFA treatment exerted influence on trypomastigote forms through an apoptosis-like mechanism and by eliminating intracellular parasites via TNF-α/ROS pathway, without generating cellular cytotoxicity.


Subject(s)
Antiprotozoal Agents/pharmacology , Diterpenes/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/toxicity , Asteraceae/chemistry , Cell Line , Chagas Disease/drug therapy , Diterpenes/toxicity , Humans , Immunomodulation/drug effects , Macaca mulatta , Macrophages/parasitology , Mice , Reactive Oxygen Species/metabolism , Trypanosoma cruzi/growth & development , Tumor Necrosis Factor-alpha/metabolism
15.
J Pharm Biomed Anal ; 208: 114461, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34775190

ABSTRACT

Liver toxicity induced by Triptolide (TP) has limited its clinical application on rheumatoid arthritis (RA). Saponins have been proved as an efficacious remedy to mitigate hepatotoxicity. However, the mechanism of reducing hepatotoxicity by saponins intervention remains incompletely characterized. Tryptophan (Trp) metabolites activate transcriptional regulators to mediate host detoxification responses. Our study aimed to investigate whether Clematichinenoside AR (C-AR) could attenuate TP-induced liver damage by regulating Trp metabolism. We used targeted metabolomics to quantify Trp metabolites in the serum and liver samples of collagen-induced arthritis rats treated by TP. Multiple comparison analyses helped the evaluation of promising biomarkers. The pronounced changed levels of Trp, indole acetic acid, and indole-3-carboxaldehyde in the serum and indole acetic acid, indole, and tryptamine in the liver are relevant to TP-induced liver injury. Intervention with C-AR could relieve TP-induced hepatotoxicity evidenced by ameliorative serum parameters and hepatic histology. In addition, C-AR regulated the levels of these indoles biomarker candidates to normal. Therapeutic modulation with natural compounds might be a useful clinical strategy to ameliorate toxicity induced by TP. Deciphering Trp metabolism will facilitate a better understanding of the pathogenesis of diseases and drug responding.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Phenanthrenes , Saponins , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Diterpenes/toxicity , Epoxy Compounds/toxicity , Liver , Phenanthrenes/toxicity , Rats , Triterpenes , Tryptophan
16.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 267-274, 2022 02.
Article in English | MEDLINE | ID: mdl-34854946

ABSTRACT

Natural products have played a pivotal role for the discovery of anticancer drugs. Tonantzitlolones are flexibilan-type diterpenes rare in nature; therefore, few reports have shown antiviral and cytotoxic activities. This study aimed to investigate the in vivo antitumor action of Tonantzitlolone B (TNZ-B) and its toxicity. Toxicity was evaluated in mice (acute and micronucleus assays). Antitumor activity of TNZ-B (1.5 or 3 mg/kg intraperitoneally - i.p.) was assessed in Ehrlich ascites carcinoma model. Angiogenesis and reactive oxygen species (ROS) and nitric oxide (NO) production were also investigated, in addition to toxicological effects after 7-day treatment. The LD50 (lethal dose 50%) was estimated at around 25 mg/kg (i.p.), and no genotoxicity was recorded. TNZ-B reduced the Ehrlich tumor's volume and total viable cancer cell count (p < 0.001 for both). Additionally, TNZ-B reduced peritumoral microvessel density (p < 0.01), suggesting antiangiogenic action. Moreover, a decrease was observed on ROS (p < 0.05) and nitric oxide (p < 0.001) levels. No significant clinical findings were observed in the analysis of biochemical, hematological, and histological (liver and kidney) parameters. In conclusion, TNZ-B exerts antitumor and antiangiogenic effects by reducing ROS and NO levels and has weak in vivo dose-repeated toxicity. These data contribute to elucidate the antitumor action of TNZ-B and point the way for further studies with this natural compound as an anticancer drug.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Diterpenes/pharmacology , Euphorbiaceae/chemistry , Macrocyclic Compounds/pharmacology , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/toxicity , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/toxicity , Cell Line, Tumor , Diterpenes/administration & dosage , Diterpenes/toxicity , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Macrocyclic Compounds/administration & dosage , Macrocyclic Compounds/toxicity , Mice , Micronucleus Tests , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism
17.
Sci Rep ; 11(1): 23083, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845218

ABSTRACT

In recent decades, herbal medicines have played more and more important roles in the healthcare system in the world because of the good efficacy. However, with the increasing use of herbal medicines, the toxicity induced by herbal medicines has become a global issue. Therefore, it is needed to investigate the mechanism behind the efficacy and toxicity of herbal medicines. In this study, using Aconiti Lateralis Radix Praeparata (Fuzi) as an example, we adopted a systems pharmacology approach to investigate the mechanism of Fuzi in treating rheumatoid arthritis and in inducing cardiac toxicity and neurotoxicity. The results showed that Fuzi has 25 bioactive compounds that act holistically on 61 targets and 27 pathways to treat rheumatoid arthritis, and modulation of inflammation state is one of the main mechanisms of Fuzi. In addition, the toxicity of Fuzi is linked to 32 compounds that act on 187 targets and 4 pathways, and the targets and pathways can directly modulate the flow of Na+, Ca2+, and K+. We also found out that non-toxic compounds such as myristic acid can act on targets of toxic compounds and therefore may influence the toxicity. The results not only reveal the efficacy and toxicity mechanism of Fuzi, but also add new concept for understanding the toxicity of herbal medicines, i.e., the compounds that are not directly toxic may influence the toxicity as well.


Subject(s)
Aconitum/metabolism , Arthritis, Rheumatoid/drug therapy , Diterpenes/pharmacology , Diterpenes/toxicity , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/toxicity , Algorithms , Chemistry, Pharmaceutical/methods , Drug Design , Drug Evaluation, Preclinical , Humans , Medicine, Chinese Traditional/methods , Network Pharmacology/methods , Plant Extracts/pharmacology , Plants, Medicinal/metabolism , Protein Interaction Mapping
18.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641534

ABSTRACT

Spodoptera litura Fab. is a polyphagous pest causing damage to many agriculture crops leading to yield loss. Recurrent usage of synthetic pesticides to control this pest has resulted in resistance development. Plant-derived diterpenoid compound andrographolide was isolated from the leaves of Andrographis paniculata. It was analysed by gas chromatography-mass spectroscopy and quantified by HPLC. Nutritional indices and digestive enzymatic profile were evaluated. Third, fourth and fifth instar larvae were treated with different concentrations of andrographolide. At 3, 6 and 9 ppm-treated concentrations the larvae showed decreased RGR, RCR, ECI, ECD values with adverse increase in AD. The digestive enzymes were significantly inhibited when compared with control. Conspicuously, andrographolide showed pronounced mortality of S. litura by inhibition of enzyme secretion and intake of food. The binding ability of andrographolide with CYTP450 showed high affinity with low binding energy. Andrographolide has the potential to be exploited as a biocontrol agent against S. litura as an eco-friendly pesticide.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Diterpenes/pharmacology , Insect Proteins/metabolism , Insecticides/pharmacology , Spodoptera/drug effects , Amylases/metabolism , Andrographis/chemistry , Animals , Diterpenes/isolation & purification , Diterpenes/metabolism , Diterpenes/toxicity , Dose-Response Relationship, Drug , Inactivation, Metabolic/drug effects , Insecticides/isolation & purification , Insecticides/metabolism , Insecticides/toxicity , Larva/drug effects , Lipase/metabolism , Molecular Docking Simulation , Peptide Hydrolases/metabolism
19.
J Ethnopharmacol ; 281: 114489, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34363931

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Triptolide (TP), the main bioactive and toxic ingredient of Tripterygium wilfordii Hook F, causes severe toxicity, particularly for hepatotoxicity. However, the underlying mechanisms for its hepatotoxicity are not entirely clear. AIM OF THE STUDY: The purpose of the study was to explore the role of miR-155, a microRNA closely related to various liver injuries and a regulator of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway, in TP-induced liver injury in vitro and in vivo. MATERIALS AND METHODS: First, in vitro L02 cells were treated with different concentrations of TP. The protein levels of Nrf2 and its downstream genes Heme oxygenase1 (HO-1) were determined by Western blot. The mRNA expression of miR-155, Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1) and HO-1 were measured using qRT-PCR. And we transfected miR-155 inhibitor and miminc before TP treatment to determine the mRNA and/or protein levels of miR-155, Nrf2 and HO-1. Then, we further confirmed the interaction between miR-155 and Nrf2 pathway in TP-induced hepatic injury in BALB/C mice. The degree of liver injury was determined by HE staining and serum biochemical. The mRNA expression of miR-155 was examined with qRT-PCR and Nrf2 and HO-1 gene expression in liver were evaluated by immunohistochemistry and/or Western blot. RESULTS: The results showed that TP significantly induced the expression of miR-155 both in L02 cells and in rodents liver tissue, and the inhibition of miR-155 could mitigate the hepatic damages caused by TP. Further experiments demonstrated that the inhibition of miR-155 reversed the down-regulation of Nrf2 and HO-1 by TP, while the miR-155 mimic enhanced the effects of TP. Animal experiments also showed that the inhibition of miR-155 by miR-155 antagomir reversed the decrease of Nrf2 induced by TP administration. CONCLUSIONS: These results indicated that miR-155 played an important role in TP-induced hepatotoxicity by regulating the Nrf2 signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Diterpenes/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , MicroRNAs/metabolism , NF-E2-Related Factor 2/metabolism , Phenanthrenes/toxicity , Animals , Cell Line , Cell Survival/drug effects , Down-Regulation , Epoxy Compounds/toxicity , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics
20.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361785

ABSTRACT

Even today, weeds continue to be a considerable problem for agriculture. The application of synthetic herbicides produces serious environmental consequences, and crops suffer loss of their activity due to the appearance of new resistant weed biotypes. Our aim is to develop new effective natural herbicides that improve the problem of resistance and do not harm the environment. This work is focused on a bioassay-guided isolation and the characterization of natural products present in Moquiniastrum pulchrum leaves with phytotoxic activity and its preliminary application in weeds. Moquiniastrum pulchrum was selected for two reasons: it is an abundant species in the Cerrado region (the second most important ecosystem in Brazil, after the Amazon)-the explanation behind its being a dominant species is a major focus of interest-and it has traditional employment in folk medicine. Six major compounds were isolated in this plant: one flavone and five diterpenes, two of which are described for the first time in the literature. Four of the six compounds exhibited phytotoxic activity in the bioassays performed. The results confirmed the phytotoxic potential of this plant, which had not been investigated until now.


Subject(s)
Asteraceae/chemistry , Biological Control Agents/toxicity , Diterpenes/toxicity , Flavones/toxicity , Herbicides/toxicity , Plant Weeds/drug effects , Weed Control/methods , Biological Assay , Biological Control Agents/chemistry , Biological Control Agents/isolation & purification , Crops, Agricultural/growth & development , Diterpenes/chemistry , Diterpenes/isolation & purification , Flavones/chemistry , Flavones/isolation & purification , Herbicides/chemistry , Herbicides/isolation & purification , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Weeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...